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RFQUIRFSIENTS OF TRAJECTORY CORRECTIVE JMPUISES DURING TRE 

APPROACH PHASE OF AN INTERPLANETARY MISSION 

By Alan L. Friedlander and David P. Harry, I11 

SUMMARY 

The basic equations describing t r a j ec to ry  motion i n  the  v i c i n i t y  of 
a t a rge t  body are presented i n  dimensionless form. 
l imited t o  two-dimensional o r b i t a l  motion t h a t  is  r e l a t ive  t o  a spherical  
planet influenced only by an inverse-square cent ra l  force f ie ld .  Correc- 
t i v e  maneuvers executed during the approach phase of an interplanetary 
f l i g h t  are studied. Optimization techniques are used t o  determine the 
minimum veloci ty  impulse required t o  correct  i n i t i a l  perigee errors ,  the 
numerical solution being obtained i t e r a t ive ly  with the aid of a d i g i t a l  
computer. The magnitude and alinement of the minimum impulse vector are 
presented fo r  an extensive range of i n i t i a l  conditions. It i s  found t h a t  
the r e l a t ed  cost  requirement, in terms of Fnpulse magnitude, increases 
with the  time necessary t o  detect  and correct  "off-course" t ra jector ies .  
The minimum corrective impulses associated with the approach phase are  
compared with the t o t a l  requirements of a round-trip Mars mission. 

The expressions are 

Impulsive thrus ts  applied in directions other than optimum are 
analyzed t o  determine deviations from the minimum magnitudes. Circum- 
f e r e n t i a l  impulses, which can be calculated from an algebraic expression, 
o f f e r  an excellent approximation under ceriaiu i r i i t i u i  C u i i 5 i t i c i i S ;  
namely, if the correction i s  executed a t  a radial distance much greater  
than the ta rge t  perigee. Expressions f o r  the e r rors  i n  corrected perigee 
( m i s s  distance) due t o  magnitude and di rec t iona l  e r rors  of the applied 
veloci ty  impulse are presented f o r  the case of circumferential thrust .  
An example of a t ra jec tory  u t i l i z ing  atmospheric deceleration demonstrates 
the c r i t i c a l  e f f ec t  of cutoff errors and gives some measure of the accu- 
racy required i n  the control of the veloci ty  vector. 

INTRODUCTION 

When considering interplanetary f l i gh t s ,  it i s  recognized tha t  
simple b a l l i s t i c  t ra jec tor ies  w i l l  meet with l i t t l e  success. A study by 
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Ehricke (ref. 1) shows tha t  the accuracy requirements during the i n i t i a l  
launch phase appear technically unfeasible. Therefore, it i s  reasonable 
t o  expect a space probe w i l l  be equipped with a navigation and guidance 
s y s t e m  that w i l l  allow t ra jec tory  corrections en route. 

The main goal of both the launch and midcourse guidance phase i s  t o  
assure a successful rendezvous with the hel iocentr ic  o rb i t  of the destina- 
t i o n  planet at  the proper time and place. Upon arriving at the destina- 
t ion,  the veloci ty  of the space vehicle w i l l ,  i n  general, d i f f e r  from 
the  orb i ta l  veloci ty  of the ta rge t  planet. This difference i s  cal led 
t h e  hyperbolic veloci ty  relative t o  the planet (ref. 2).  
body causes the  vehicle t o  move along a hyperbolic approach trajectory.  
Because of various perturbations, such as guidance errors,  the i n i t i a l  
t ra jec tory  w i l l  most l i k e l y  d i f f e r  from the  desired one. 
fore  be necessaryto correct the trajectory.  
the  significant t ra jec tory  parameters i s  the perigee (distance of c losest  
approach ) . 

The a t t rac t ing  

It w i l l  there- 
A convenient measure of 

The major objective of t h i s  report  i s  t o  present an analysis of the  
minimum velocity impulse required t o  correct  perigee errors.  The t a rge t  
perigee is chosen based upon mission requirements such as the establ ish-  
ment of a s a t e l l i t e  orb i t  or possibly the  use of atmospheric decelera- 
t ion.  However, in order not t o  l i m i t  the  resul ts ,  the solution w i l l  be 
considered independent of the maneuver executed upon reaching the  t a rge t  
perigee. A study i s  also made of veloci ty  impulses alined i n  direct ions 
other than the  optimum t o  determine the penalties in energy expenditure 
due t o  departure from optimum. 

I n  support of the necessity of perigee corrections, two methods of 
transferring from an approach t ra jec tory  t o  a circular  sa te l l i t e  o rb i t  
are investigated and compared on the  bas i s  of veloci ty  requirements. 
The t o t a l  veloci ty  impulses associated with interplanetary f l i g h t s  are 
presented i n  reference ‘2 fo r  an idealized t ra jec tory  assuming no path 
corrections upon approaching the ta rge t  planet. The r e su l t s  of the  
present study may be used t o  calculate the  contribution of corrective 
impulses t o  overal l  mission requirements. A l s o  included i n  t h i s  report  
i s  an analysis i l l u s t r a t ing  the effects  of impulse alinement and magnitude 
e r rors  upon the corrected trajectory.  
t r o l  of the impulse vector may be estimated i f  the permissible e r ror  i n  
the  target  perigee i s  given. 

The accuracy required i n  the  con- 

The resu l t s  of t h i s  report  are not intended t o  apply t o  an actual  
space fl ight.  The fundamental re la t ions  describing t ra jec tory  motion 
are  limited t o  the assmption of a two-body, two-dimensional problem. 
Since the scope of the analysis i s  defined only i n  the v i c in i ty  of the 
t a rge t  planet, t h i s  assumption i s  f e l t  t o  be valid. The r e su l t s  and 
conclusions should be useful t o  any future  comprehensive mission 
analysis. 
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AV 
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dimensionless semimajor axis, a/rp2 

semimajor axis, m i l e s  

dimensionless t o t a l  energy per un i t  m a s s ,  2fir//(v* l2 

t o t a l  energy per un i t  mass, (miles/sec)2 

universal gravi ta t ional  constant 

p2 

dimensionless angular momentum per  uni t  m a s s ,  h/v* r 

angular momentum per uni t  mass, miles2/sec 

p2 p2 

mass of planet 

dimensionless radial distance (range), r/r 

dimensionless perigee of trajectory,  rg'rp2 

radial distance measured from center of planet (range), m i l e s  

p2 

perigee of trajectory,  miles 

dimensionless velocity, v/v;, 
Y 

dimensionless veloci ty  impulse, AV/V* 
p2 

velocity, miles/sec 

veloci ty  of escape a t  perigee, miles/sec 

t ra jec tory  angle, angle between loca l  horizontal  and t r a j ec to ry  
tangent, deg 

velocity impulse angle with respect t o  i n i t i a l  veloci ty  vector, 
deg 

Subscripts: 

C c i rcu lar  

e escape 
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min 

opt 

t 

t. e. 

I 

I1 

1 

2 

hyperbolic 

entry 

minimum 

optimum 

t o t a l  

t ransfer  e l l i p se  

f i r s t  impulse 

second impulse 

conditions of in i t ia l  approach t r a j ec to ry  

conditions of desired approach t r a j ec to ry  

ANALYSIS 

Method of Analysis 

Assumptions. - In order t o  simplify the following analysis, cer ta in  
assmptions and approximations a re  made. Trajectory motion during the 
approach phase i s  considered t o  be r e l a t ive  t o  the a t t r a c t i v e  body and 
influenced only by an inverse-square cen t r a l  force f i e ld .  
the mass of the vehicle is insignif icant  in comparison t o  t h a t  of the 
a t t rac t ing  body. Only high-thrust devices are  considered. The veloci ty  
impulses me therefore associated with negligible burning times r e l a t ive  
t o  t ra jec tory  time scales, and the direct ion of the ve loc i ty  impulse 
vector can be considered constant. Also, the corrective impulses ase 
applied in  a constant plane of motion. 
such as velocity, perigee, and r a d i a l  distance, are  accurately known. 
Therefore, t r a j ec to ry  corrections can be made at  a reasonably large 
distance from the planet. 

Furthermore, 

I n i t i a l  t r a j ec to ry  pasameters, 

I n  an ac tua l  f l i g h t  s i tua t ion  many of these assmptions may not be 
For instance, perturbing ef fec ts  of moons, unsymmetrical gravi- valid. 

t a t iona l  f ie lds ,  instrument errors ,  and three-dimensional motion must be 
;&en into account. The r e s u l t s  of t h i s  report  m e  intended only t o  
lefine the nature of corrective maneuvers and t o  a id  i n  the rapid e s t i -  
iation of veloci ty  requirements. 

Normalized t r a j ec to ry  equations. - If the r e s u l t s  of t h i s  analysis 
r e  t o  be applicable t o  any t a rge t  planet, the  basic equations describing 
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t r a j ec to ry  motion must be transformed t o  a dimensionless, or  normalized, 
form. 
t ra jec tory  and the escape veloci ty  at  th i s  radial distance as the nor- 
malizing factors.  
yet i s  eliminated as a separate system parameter. 

This i s  achieved by using the perigee of the desired approach 

In t h i s  way the target  perigee remains a variable and 

The normalization procedure is  applied t o  the two basic equations 

Since the c l a s s i ca l  two-body problem has 
describing motion along the t ra jectory,  namely the conservation of both 
energy and angular momentum. 
been assumed, the t o t a l  energy per uni t  mass i s  given by the  sum of 
k ine t ic  and potent ia l  energy: 

The angular momentum per uni t  mass is  

where 
and the perpendicular t o  the radial vector. 
defined as the veloci ty  along a parabolic o rb i t  (8 0). Therefore, at 
the perigee of a desired approach path the veloci ty  of escape i s  a con- 
s tan t  given by 

a (see fig.  1) is the t ra jec tory  angle between the veloci ty  vector 
The veloci ty  of escape i s  

Tne 6el”iriiiig e q ~ ~ t i c n s  04 the nnrmalization axe I v v = - -  
V* 

p2 

r 
IP2 

E = -  2 8  

R a -  

h HI- v* r 
22 p2 I 

Equations (1) and ( 2 )  may now be divided by (v” ) 2  and v: rp , p2 2 2  
respectively, a d  rewrit ten i n  dimensionless form: 

(4) 



6 

2 1  
- B  E = V  ( 5 )  

The t ra jec tory  angle at  the perigee of any approach path i s  ident i -  
ca l ly  zero. 
combined fo r  conditions a t  the  perigee. 
shown t o  be a function of energy and perigee: 

Since equations (5) and ( 6 )  are conservative, they may be 
The angular momentum i s  thus 

H2 = $E + Rp ( 7 )  

The t ra jectory angle i s  now given as 

cos a = 

Range of in i t ia l  conditions. - A summary of planetary da ta  presented 
i n  references 2 and 3 i s  l i s t e d  i n  tab le  I. A l l  quant i t ies  i n  the tab le  
are ei ther  given i n  dimensional un i t s  o r  are  referred t o  conditions at 
the  surface of the  planet. 

Row 3 represents a good estimate of the  maximum radial distance 
(range) where a space probe could be considered influenced mainly by the 
force f i e l d  of the a t t rac t ing  body. 
greater and l e s s  than the ta rge t  perigee w i l l  be investigated. 
i n i t i a l  energy of an approach t r a j ec to ry  i s  equal t o  the  square of the 
normalized hyperbolic velocity. The values given i n  rows 4 and 5 must 
f i r s t  be normalized t o  the  t a rge t  perigee. 
analysis, a reasonable range of i n i t i a l  conditions i s  taken as 

Values of in i t ia l  perigee both 
The 

For the  purpose of this  

0.01 1. R 2 100 

0.01 1. Rp 5 100 
1 

0 5 E1 2 1.0 

It should be mentioned t h a t  negative energies 
may be of interest .  The subsequent equations 
case; however, r e su l t s  w i l l  be discussed only 
t ra jec tor ies  . 

( e l l i p t i c a l  t ra jec tor ies )  
w i l l  be val id  f o r  t h i s  
i n  terms of higher energy 

Throughout the analysis a l l  equations w i l l  be wri t ten i n  normalized 
form, and most r e su l t s  and conclusions w i l l  be discussed i n  terms of 
normalized parameters. 
of the physical significance of the  resul ts .  

This should not cause the  reader t o  lose s ight  
For a given problem the 
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desired conditions are  fixed. Therefore, the dimensionless pazameters 
are  d i r ec t ly  proportional t o  the realpmameters.  

Perigee Corrections - Minimization of Velocity Impulse 

The gravi ta t ional  f i e l d  of am at t ract ing body causes a space vehicle 
entering the f i e l d  t o  move along an approach t ra jec tory  r e l a t ive  t o  the 
body. With reference t o  f igure 1, assume tha t  the  perigee (distance of 
closest  approach) of the i n i t i a l  t ra jectory d i f f e r s  from a desired o r  
t a rge t  perigee. The ta rge t  perigee i s  chosen based on mission require- 
ments such as the establishment of a s a t e l l i t e  orbit ,  o r  possibly the 
use of atmospheric deceleration. 
applied t o  correct the i n i t i a l  perigee error. 
be minimized by orienting the thrust  vector i n  the proper direct ion.  

A velocity impulse must therefore be 
The impulse required can 

Characterist ics of optimum solution. - From the  trigonometric re la -  
t ions of figure 1, 

2 2  AV2 = V1 + V2 - 2V1V2 cos (u2 - 5) 

and 

v2 sin(u2 - 5) 
s in  P = 

AV 

(9) 

To perform the  optimization, the  t o t a l  derivative of equation (9) i s  
taken and equated t o  zero, a l l  quantities with subscript l b e i n g  constant: 

F r o m  equations (51, (6), and (7), where Rp3 = 1 by definit ion,  

o r  

This equation 
the corrected 

defines the general vector v2 tha t  i s  required t o  s a t i s f y  
trajectory.  



8 

Differentiating equation (12) ,  R being constant, 

Substituting t h i s  r e s u l t  in to  equation (U) and simplifying give 

Equations (12) and (13) ac t  together t o  define optimum conditions; 
however, any algebraic manipulation leads t o  a polynomial equation of 
such high degree t h a t  the task of extracting the r e a l  roots becomes 
impractical. Since high-speed computing f a c i l i t i e s  were avilable,  it 
w a s  considered expedient t o  obtain a t r ia l -and-error  i t e r a t i v e  solution. 
This was accomplished as follows., ’ 

In equation (131, % was used as the t r ia l  value based i n i t i a l l y  
upon the knowledge of 

substi tuted in to  equation (12), thereby giving a new value of % 
was treated by a forced conversion technique. The looping terminated 
when successive values of V2 agreed t o  six s igni f icant  d ig i t s .  The 
resul t ing values of (VZ,%)opt were used i n  equations ( 9 )  and (10) t o  
obtain the optimum (minbum) veloci ty  impulse vector (AV,P). 

%; V2 was  obtained f r m  equation (13) and then 
t h a t  

Care w a s  exercised i n  the i t e r a t i v e  treatment t o  assure t h a t  the 
solution yielded the proper root corresponding t o  minimum conditions. 
To assist in  explaining the  charac te r i s t ics  of the optimum solution, 
consider equation (12). R, 
V2 i s  found corresponding t o  any choice of 9. The veloci ty  increment 
i s  then calculated from equation (9).  

For a given initial t r a j ec to ry  and range 

Figure 2(a), plot ted fo r  El n 0, R = 5, and R = 50, shows the 

e f f e c t  of the t r a j ec to ry  angle on the s i ze  of the corrective impulse. 
For t h i s  plot, % i s  defined as the angle measured clockwise from the  
vector V2 t o  t he  horizontal  direction. For the purpose of explanation, 
the  figure i s  divided into four quadrants. A vector V2 lying i n  the 
first quadrant designates counterclockwise motion directed toward the 
a t t rac t ing  body. Similari ly,  second-, third-,  and fourth-quadrant vectors 
designate clockwise-toward, clockwise-away, and counterclockwise-away 
motion, respectively. 
t h a t  approaches the ta rge t  body i s  of i n t e r e s t  here. 

P1 

. 

The l a t t e r  two can be dismissed, since only motion 
Furthermore, it can 

M 
I 
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be said in tu i t i ve ly  that ,  unless rotat ional  changes are  warranted, i m -  
pulses t h a t  ac t  t o  maintain the i n i t i a l  ro ta t ion  should be l e s s  costly. 
This is  substantiated by the graph, which shows two d i s t i n c t  optimums, 
one occurring at % = 81.53' and the  other at % = 98.47O. The corre- 
sponding impulse magnitudes are  0.0247 and 0.0648, respectively, the 
former being the  minimum solution. In  t h i s  example there  is  a small band 
of t ra jec tory  angles (88.85O < a2 < 91.15O) t h a t  r e s u l t  i n  a nonreal im- 
pulse. It can be shown from equation (12)  t h a t  t h i s  band increases with 
decreasing R. 

To i l l u s t r a t e  the sens i t i v i ty  i n  the v i c i n i t y  of the  minimum, a mag-  
n i f ied  p lo t  i s  shown i n  f igure 2(b). 
highly sensi t ive t o  the t r a j ec to ry  angle, it i s  very insensi t ive t o  the 
thrust  direction. For example, a AV change of 0.01 on both s ides  of 
the minimum corresponds t o  a 2.9O change in 9 and an 86' change i n  p. 

Whereas the minimum impulse i s  

The optimum solution has been discussed f o r  a par t icu lar  s e t  of 
i n i t i a l  conditions. 
vary with i n i t i a l  conditions, the general charac te r i s t ic  of f igure 2( a) 
can be anticipated. The i t e r a t i v e  solution w a s  employed t o  calculate  a 
m u l t i t l ~ d e  c?f d b t n  points with no apparent discrepancy; therefore, the 
t rue  minimum solution i s  assmed. 

Although numerical r e su l t s  and s e n s i t i v i t i e s  w i l l  

In  the event t ha t  a corrective impulse is  applied at the perigee of 
the approach trajectory,  equation (13) is  reducible and the optimization 
may be t rea ted  analyt ical ly .  This special case i s  discussed i n  appendix A .  

Characterist ics of minimum velocity impulse. - The minimum impulse has 
heen calcula.t.4 f o r  an extensive range of i n i t i a l  conditions and i s  i l l u s -  
t r a t e d  i n  f igure 3 for an a rb i t r a ry  energy El of 0.05. 

The magnitude of AV i s  plotted i n  figure 3 ( a )  a s  a f'unction of 
An i n i t i a l  i n i t i a l  perigee f o r  a family of constant r a d i a l  distance. 

perigee 

fore, AV As the  ini t ia l  perigee deviates from 
unity, the required impulse increases. Also, f o r  a given perigee, the 
greater  the range at which the correction i s  made, the smaller the veloc- 
i t y  impulse. 

of 1 represents a n  i n i t i a l  "on-course" t r a j ec to ry j  there- % 
i s  zero at  t h i s  point. 

The optimum impulse angle Bopt i s  shown i n  f igure 3(b). It i s  
approaches unity. Also, i f  the noted t h a t  pOpt approaches 90° as 

correction i s  made at  a large distance from the planet, the opthum angle 
i s  qui te  insensit ive t o  the i n i t i a l  perigee, but becomes increasingly 

% 
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sensit ive with decreasing R. Consequently, when R i s  s m a l l  and 

because of th rus t  misalinement. 

> 1, a s ignif icant  e r ror  i n  the  corrected perigee can be expected 

- % 
This r e su l t  i s  demonstrated by a detai led 

e r ror  analysis later i n  t h i s  report. 

A most  in terest ing and useful r e su l t  i s  

The inverse proportionali ty i s  i l l u s t r a t e d  i n  figure 3 , 2 ) ,  where the  da ta  
presented i n  f igure 3(a) are plot ted as a function of f o r  a family 

The log-log scale i s  chosen t o  demonstrate an approxi- of constant R 

m a t e  slope of -1. For a given t ra jec tory  the maximum deviation occurs 
when R = R The accuracy of the approximation increases with de- 

creasing perigee. For example, the  maximum errors at Rp = 5 and 2 

R 

P1' 

P1' 

1 

1 

are  about 5.4 and 32 percent, respectively. 
the e r ro r  i s  insignif icant  and expression (14)  offers  an excellent approx- 
imation. This r e su l t  w a s  found t o  apply equally well  fo r  a l l  values of 
i n i t i a l  energy and perigee studied. 

However, formost  conditions 

In general, the  minimum impulse causes a change i n  the  veloci ty  and 
therefore a change i n  the energy of the  approach trajectory.  
i s  shown i n  f igure 3(d). 
correction, the  larger  the energy change. The most s ignif icant  chasacter- 
i s t i c  i s  that  the  energy i s  decreased i f  the i n i t i a l  perigee i s  greater 
than the  target perigee and vice versa. The importance of this f a c t  i s  
real ized when consideration i s  given t o  type of maneuver executed upon 
arr iving a t  the  tasget  perigee. 
f o r  a s a t e l l i t e  o rb i t  around the planet, the  energy of which i s  a l w a y s  
l e s s  than the approach energy. Obviously, the  l e s s  the  difference be- 
tween the  two energies, the smaller w i l l  be the  velocity increment needed 
t o  establish the s a t e l l i t e  orbit. Therefore, i f  R > 1, the minimum 

impulse appears t o  have an added advantage i n  terms of the t o t a l  mission. 

This e f f ec t  
For a given R, the  larger  the required perigee 

Assume the mission requirement c a l l s  

P1 

Approximate calculation for  general set of i n i t i a l  conditions. - 
Thus far, only the  character is t ics  of the minimum impulse have been 
discussed. 
would enable one t o  obtain a rapid and reasonably accurate numerical 
answer for  an asbi t ra ry  ta rge t  planet and approach trajectory.  
accomplished using the approximation of equation (14).  
f o r  
for a family of constant i n i t i a l  perigees. 

It would be useful t o  present the  r e su l t s  i n  a manner tha t  

This i s  

R = 50, shows the  variation of minimum impulse with i n i t i a l  energy 
Figure 4, plotted 

Therefore, given an a rb i t r a ry  
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s e t  of in i t ia l  conditions (E1,Rp, ,R), AVmin i s  found by entering the 
I 

and multiplying %, graph with the par t icu lar  El, interpolating f o r  

the value of AV read off the ordinate scale  by 50/R. 

As an example, consider approaching Venus along a hyperbolic tra- 
jectory described by the following parameters: 
ond and rp = 4.95 Venus radii. Furthermore, the i n i t i a l  perigee i s  

1 
t o  be corrected at  a distance r = 75 Venus r a d i i  t o  a ta rge t  perigee 

velocity. 
are  found t o  be E1 = 0.075, R = 4.5, and R = 68.2. From f igure 4(a), 

vh ri 1.70 miles per sec- 

I 1.1 Venus radii. The i n i t i a l  energy is  the square of the hyperbolic 

Using the defining equations (4) ,  the normalized parameters 

p1 

AV S 0.03 (&) =5 0.0222 

Since the  escape veloci ty  at 1.1 radii is  6.2 miles per second = 32,750 
f ee t  per second, the minimum velocity Fmpulse required i s  

Av = (0.0222)(32,750) =( 727 f t j s e c  

Velocity Impulses Alined i n  Directions Other Than Optimum 

For most i n i t i a l  conditions the corrective velocity impulse may be 
applied i n  any given direction, where the magnitude of the impulse i s  
+.hen deDendent on direction. Heretofore, the case of the minimum im- 
pulse has been presented. 
direct ions i n  which a corrective sbpulse may be applied! tangential ,  
radial ,  and circumferential. 
such a direct ion t h a t  the energy remains the same before and a f t e r  
burning. 

There are  a t  l e a s t  three o the r  weii-defizrC 

A fourth poss ib i l i t y  i s  t o  apply thrus t  i n  

It would be of i n t e re s t  t o  study these cases individually in order 
t o  determine f i r s t ,  whether such corrections a re  feasible,  and second, 
how and under what conditions they compwe with the minimum. It would 
be extremely useful  t o  obtain a simple algebraic expression t h a t  would 
closely approximate the  minimum impulse. The analysis i s  presented i n  
appendix B3 the r e su l t s  are given herein. 

Tangential impulse. - The velocity impulse f o r  the tangent ia l  
d i rec t ion  is  
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Radial bpulse .  - The r a d i a l  veloci ty  impulse i s  

AV = 

i s  

... 

- l / E 1 ( R 2  - R2 ) + (R - % ) (16) 
P1 1 I 

sj Circumferential impulse. - The equation f o r  circumferential impulse 
P a3 

Zero-energy-change impulse. - The equation f o r  no energy change i s  
7 

as  follows: 

Comparison with minimm impulse. - The required impulsive ve loc i t ies  
corresponding t o  tangential ,  radial, circumferential, and zero-energy- 
change vectoring are  given by equations (15), (16), (17), and (18), 
respectively. The f i r s t  two are  compared with AV,k and plot ted i n  
f igure 5 f o r  E 1  = 0 and R = 100. Tangential th rus t  approaches the 
minimm only when the i n i t i a l  perigee i s  equivalent t o  the range at  
which the th rus t  i s  applied. 
considerable, the increase i n  AV being as much as 100-fold f o r  s m a l l  
i n i t i a l  perigees. 
values. In fact ,  f o r  t h i s  example, radial thrus t  cannot be applied if 
R 

the minimum has been found t o  be charac te r i s t ic  f o r  a l l  i n i t i a l  condi- 
t ions (E 1, R pl,R) studied. 

alined i n  e i t he r  the  tangent ia l  or the r a d i a l  direct ion a re  much too 
cos t ly  i n  terms of required veloci ty  increment. 

For a l l  other conditions the deviation i s  

The use of radial th rus t  requires much larger  AV 

< 0.99 (see thrus t  l imitat ions i n  appendix B) .  This deviation from 
P1  

It i s  concluded t h a t  corrective impulses 

The velocity requirements of circmnferential and zero-energy-change 
impulses are compared with the minimm i n  the following table! 

c 
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R (AVx102)min AVX102 $ deviation AV)<102 $ deviation - 
(m = 01 from min. (circum- from min. 

fe ren t  i a l )  
c 

d a * 
I w 

100 2.163 2.211 2.2 2.163 0.00 
50 4.328 4.531 4.7 4.328 . 00 
20 10.87 12.36 14,O 10.87 . 00 
10 22.09 36.98 67.0 22.09 0 

r 4 

I - 
4.90 1.763 1.890 7.2 1.805 2.4 
2.94 3.159 3.620 14  3.285 4.0 
2.45 3.992 4.580 14  4.185 4.8 
1 .96  5.523 6.230 13 5.890 6.7 
1.47 9.648 11.21 16 11.48 19.0 
1.175 29.17 36.40 25  29.80 2.2 

= O, Rp1= lo 

I = 1.175 = O, Rp, I 

.Lt-)e - ,Jppel' p-& of tlie table Ls for & p&-&"uolie qprcack; C r n 4 - n C n n . 7  "I. UJ cc ""I J 

having an i n i t i a l  perigee ten times as great  as the ta rge t  perigee. 
Zero-energy-change impulses a re  reasonably good approximations t o  the 
minimum when R i s  considerably l a r g e r  than R The maximum deviation 
occurs when the correction i s  m a d e  a t  the  perigee. 
pulses do not d i f f e r  s ign i f icant ly  from the minimum. 

Pl' 
Ci rcmferent ia l  im- 

The second par t  of the tab le  shows the e f f ec t  when corrective th rus t  
i s  applied near the ta rge t  perigee. In the case of zero-energy-change 
bpulses ,  the deviation increases as the range i s  decreased, and the 
order of magnitude is  not unlike tha t  of the f i r s t  example. For c i r c m -  
f e r e n t i a l  impulses, the deviation i s  small when R is  large, increases 
with decreasing R, and then becomes small again as R - Rpl. A s  d i s -  

cussed i n  appendix A, i f  th rus t  is  applied at  the perigee, the minimum 
veloc i ty  increment corresponds t o  circumferential alinement i n  most 
cases. If the approach t r a j ec to ry  i s  parabolic, t h i s  i s  t rue  provided 
R = R > 1.220. 

P1 
A s  a means of explaining the close equivalence of circumferential 

and min imum impulses, consider equation (131, which i s  the equation of 
condition f o r  the optimization: 

V2 s i n  al 1 cos a1 - -  - V1 s i n  a2 
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Now if R is much greater than the target perigee, 

and 

then 

cos a1 
cos CL-2 

<< R2 

But the relation that describes circumferential thrust is given by 
equation (B11) : 

v2 sin a1 
-I 

V1 sin % 

Therefore, when the approximation is valid the minimum solution will 
yield a circumferential thrust. The magnitudes of the two terms in 
equation (13) are compared in the following table to illustrate the 
degree of approximation involved. The initial conditions chosen are 
identical to those in the preceding table, which compared the AV 
quired for the minimum and circumferential impulses: 

re- 

R sin a1 1 cos a1 
sin a2 

= O, % = 
I I I 

0.953 0.000301 
.00115 1 I .740 .905 1 .00595 I 

El = 0, = 1.175 

4.90 
2.94 
2.45 
1.96 
1.47 

0.937 
.850 
.792 
.685 
.445 

0.0445 
.123  
.177 
.277 
.492 

k 
I 
P 
P 
a 

The usefulness of equation (17 )  in estimating the m i n i m u m  impulse is 
appasent in terms of reduced computing effort. 
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Transfer Maneuvers and Total Mission Requirements 

Throughout the previous analysis the problem of correcting of f -  
course approach t r a j ec to r i e s  t o  pass through a desired perigee has been 
investigated. The solution was considered independent of the type of 
maneuver executed upon reaching the perigee. 
of perigee corrections i s  presented f o r  a mission p ro f i l e  ca l l ing  f o r  
more than a grazing pass or for the  employment of atmospheric decelera- 
tion. 
s a t e l l i t e  orb i t  at  some specified alt i tude.  
from an approach t ra jec tory  t o  the s a t e l l i t e  o rb i t  are  compared on the 
basis of veloci ty  requirements. 

In t h i s  section the  method 

Consideration is  given t o  the case of establishing a c i rcu lar  
Two methods of t ransferr ing 

Perigee intersect ion maneuver. - The perigee intersect ion maneuver 
involves two veloci ty  impulses as shown i n  f igure 1, one t o  correct the 
perigee of the i n i t i a l  approach t ra jectory t o  a perigee corresponding t o  
the specified s a t e l l i t e  radius, and the second t o  achieve c i rcu lar  veloc- 
i t y  at t h i s  radius. 
technique previously discussed. 
veloped i n  appendix C t  

The f i r s t  impulse i s  based on the minimization 
The expression f o r  the second i s  de- 

It i s  reca l led  t h a t  E2 is  dependent upon AVmin. 

Transfer e l l i p se  maneuver. - The t ransfer  e l l i p se  maneuver (fig.  
6(  a ) )  requires no correction of the i n i t i a l  approach t ra jectory,  provided 
it i s  not a col l is ion course. Upon arriving a t  the perigee, a t rans i t ion  
i s  made t o  a t ransfer  e i i i p se  that La t z g e n t  t.c h n t h  the i n i t i a l t r a -  
jectory and the s a t e l l i t e  orbit .  A second veloci ty  impulse a t  the l a t t e r  
point of tangency establishes c i rcular  velocity. The t o t a l  veloci ty  
requirement i s  derived i n  appendix C: 

The absolute-value signs are  necessary t o  include e i the r  i n i t i a l  condi- 
t ion,  Rp > 1 or Rp < 1. 

1 1 

Comparison of t ransfer  maneuvers. - The two methods of t ransfer  
maneuver are  compared on the basis of t o t a l  veloci ty  requirements. 
Equations (19) and (20)  are  plot ted in f igure 7(a) f o r  a parabolic 
approach t ra jec tory  (E1  = 0). 
f o r  both methods and corresponds t o  an i n i t i a l  on-course trajectory.  

The minimum AVt (0.2929) i s  ident ica l  
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s 
When the i n i t i a l  perigee i s  greater  than the ta rge t  (R > l), the  veloc- 

i t y  requirement of the t ransfer  e l l i p s e  method reaches a maximum a t  about 
= 7. The value of Rp a t  which t h i s  maximum occurs increases as - 

the  i n i t i a l  energy l eve l  i s  raised. 
r e su l t s  i n  a s izable  saving of veloci ty  impulse over the t ransfer  e l l i p s e  
method. For example, i f  R = 100, a maximum reduction of about 35 per- 
cent occurs a t  

P1 

RPl 1 
The perigee intersect ion maneuver 

Rpl = 7. 
M 

Considering Rpl < 1, it i s  seen t h a t  the perigee intersect ion 
maneuver requires a smaller t o t a l  veloci ty  Impulse over the range of R 
studied. However, t h i s  charac te r i s t ic  i s  not generally t r u e  f o r  a l l  
i n i t i a l  conditions. 

I 
rp 
CD 
rp 

A further comparison of the  two t ransfer  maneuvers i s  shown i n  f i g -  
ure 7(b), where the veloci ty  is  plot ted as a function of the i n i t i a l  
energy. The curves representing the t ransfer  maneuvers correspond t o  a 
constant i n i t i a l  perigee of 0.1. The curve representing the i n i t i a l  on- 
course approach t r a j ec to ry  i s  calculated from equation (ZO), where 
Rpl = 1. "his curve in te rsec ts  the t ransfer  e l l i p se  curve a t  
In  fac t ,  it is  possible t o  prove from equation (20)  t ha t  an intersect ion 
always occurs a t  t h i s  point i f  R < 1. Therefore, i f  the i n i t i a l  con- 
d i t ions  are such t h a t  the energy and perigee are greater  and l e s s  than 
unity, respectively, it i s  surpr is ingly found t h a t  being off-course, i n  
the proper direction, i s  an advantage. 

El = 1. 

p1 

Returning t o  the  comparison, two curves representing the perigee 
I f  the  perigee correction is  made a t  intersection maneuver a re  shown. 

R = 5, t h i s  method requires l e s s  ve loc i ty  impulse i f  E1 < 0.22. 
l a r ly ,  i f  R = 10, the energy need be l e s s  than 0.57. It i s  in te res t ing  
t o  note that the charac te r i s t ic  f o r  R 4 00 coincides with the on-course 
curve. 

Simi- 

Consequently, t h i s  method i s  always more cos t ly  than the t ransfer  
e l l i p s e  maneuver f o r  the conditions Rpl < 1 and E 1  > 1. 

Figure 7(c)  shows the var ia t ion of veloci ty  impulse with i n i t i a l  
Unlike f igure 7(b), the energy for a constant i n i t i a l  perigee of 10. 

perigee intersection maneuver appears always t o  require l e s s  AV. 

The more e f f i c i en t  of the two t ransfer  maneuvers thus depends upon 
the i n i t i a l  approach trajectory.  
were defined, the probabi l i ty  of one method requiring l e s s  veloci ty  im- 
p u h e  than the other could be calculated f o r  a specif ic  mission. 
no attempt i s  made i n  t h i s  report  t o  define such e r ro r  dis t r ibut ions,  
based on the charac te r i s t ics  of f igures 7 it i s  reasonably assumed t h a t  
the method involving perigee corrections i s  the preferred one under most 
i n i t i a l  conditions. 

If the i n i t i a l  perigee d is t r ibu t ion  

Although 

(. 
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Contribution of corrective impulses t o  t o t a l  mission requirements. - 
Consider a round-trip M a r s  mission involving the t ransfer  from a c i rcu lar  
s a t e l l i t e  o rb i t  at  1.1 Earth r a d i i  t o  a similar o rb i t  a t  1.1 M a r s  radii. 
Assume the t ransfer  o rb i t  t o  be a minimum-energy, hel iocentr ic  e l l ipse.  
The hyperbolic ve loc i t ies  given i n  rows 4 and 5 of tab le  I are  here 
referred t o  the veloci ty  of escape a t  1.1 planet radii: 

= 1.1(0.512)2 = 0.2880 
M a x s  

= 
M a r s  

( E l )  

Assume perigee corrections are made far from the planet. 
example, R a 50 

For t h i s  
or  r = (50)(1.1) m 55 planet radi i .  

The required veloci ty  impulse corresponding t o  i n i t i a l  perigee 
e r rors  can be found from f igure 4(a). 
and Earth rad i i ,  respectively, are calculated from row 2 of t ab le  I: 

The escape veloci t ies  at 1.1 M a r s  

a 3.22 a 3.07 miles/sec = 1 6 . 2 7 ~ 1 0 ~  f t / sec  (ve )gm s 1.1 

= 6.95 a 6.64 miles/sec = 35. U103 f t / sec  
(ve 'Earth 1.1 

Av, f t /sec 

1122 
1627 2250 
3375 4270 

The t o t a l  mission requirement less  corrective impulses has been 
calculated i n  reference 2: 

Avt 36,900 f t / sec  

For the  purpose of t h i s  example, equal i n i t i a l  perigee errors  a re  
chosen upon a r r i v a l  a t  both M a r s  and Earth. The contribution of correc 
t i v e  impulses t o  the t o t a l  requirement i s  given by the following table:  
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rp l  
Rpl = ri 

1.2 
2 
5 
10 
20 

A v M a r s  Percent of 
+ t o t a l  Av 

AvEa.rth, 
f t / sec  

118 0.32 
552 1.5 

18 70 4.8 
3877 9.5 
7645 17.0 

M 
I 
rp 
CD 
I+ 

The preceding r e su l t s  are  presented t o  show the order of magnitudes 
involved in the  correction of off-course t ra jec tor ies .  I f  the i n i t i a l  
perigee dis t r ibut ion were defined, the corresponding thrus t  d i s t r ibu t ion  
could be analyzed t o  yield a more canplete and meaningful resul t .  
an analysis, however, would depend upon the de t a i l s  of i n i t i a l  launching 
errors,  midcourse guidance, and perturbations en route, which are beyond 
the scope of t h i s  report. 

Such 

Effects of Cutoff E r r o r s  

It would be of i n t e re s t  t o  define the " m i s s  distance" resul t ing 
from errors i n  the application of the corrective thrust ,  thus giving 
some measure of the accuracy required i n  the  control of the veloci ty  
vector. 
vector ( i n  magnitude and/or direct ion)  from the correct value, where the 
direct ional  e r ro r  i s  l imited t o  the o r b i t a l  plane. The analysis i s  based 
on the  def ini t ion of t o t a l  derivative and simple p a r t i a l  different ia t ing.  

An e r ro r  w i l l  be considered a small deviation of the ve loc i ty  

Thus, 

Beginning with the re la t ion  H$ = g2E2 + and d i f fe ren t ia t ing  with 

respect t o  a variable y, 

Since R = 1 a t  the point t o  be evaluated, 
aH2 aE2 

p2 

2EZ + 1 
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Now H2 = V$ cos %, where R is  constant:  

Substi tution of (24)  and (25)  i n to  (23) gives 

The variable y may r e fe r  e i ther  t o  AV o r  B. The evaluation of 
aV2/ay and */ay can be simplified by considering circumferential 
L ~ p ~ l s i w  t.hrusts, which have previously been shown t o  approximate the  
minimum correction. This was carried o m  w i t h  ral”eFeiice t o  t h e  trigono- 
metric re la t ions  corresponding t o  figure 1, keeping i n  mind tine two pos- 
s ib l e  i n i t i a l  conditions Rp 5 1. The p a r t i a l  d i f fe ren t ia t ion  proceeded 

i n  general terms, keeping the ident i ty  of t r a j ec to ry  parameters EZ, V2, 
H2, and so forth,  and only thereafter was  evaluated at the circumferential 
condition. “he r e su l t s  are  given: 

1 

For the  sake of simplifying the discussion of these results, an 
example was worked out. The example w a s  chosen t o  demonstrate the c r i t i -  
c a l  e f f ec t  of cutoff errors.  A n  i n i t i a l  parabolic approach path re la t ive  
t o  Earth w a s  selected, the ta rge t  perigee being a t  40 miles a l t i t ude  i n  
order t o  take advantage of atmospheric deceleration. 
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The m i s s  distance due t o  an e r ro r  i n  impulse magnitude is  shown i n  

arp2/a(AV) 
figure 8(a)  as a function of i n i t i a l  perigee and range. 
nif icant  region (Rpl < 0 . M )  over which the  e r ror  coeff ic ient  

i s  re la t ive ly  independent of i n i t i a l  perigee. 
jectory, the  m i s s  distance decreases with the  range a t  which the  correc- 
tive impulse i s  applied, the var ia t ion being approximately l inear  over 
the  f l a t  character is t ic .  As m i g h t  be expected, the pr ice  of using a 
smaller veloci ty  increment i s  an increased sens i t i v i ty  t o  deviations i n  
the  magnitude of the applied increment. 

There i s  a s ig-  

Considering a given tra- 

The m i s s  distance due t o  th rus t  misalinement i s  plot ted i n  f igure 
8(b). The e r ror  coeff ic ient  ar / a p  approaches zero for two d i s t i n c t  
conditions: 
i s  applied a t  the  perigee. Considering a given trajectory,  the  e r ro r  i s  
minimized by applying th rus t  a t  a large range R, a f a c t  that i s  compati- 
ble w i t h  the  minimization of the  required corrective impulse. 

p2 
(1) i f  the i n i t i a l  t r a j ec to ry  i s  on-course, and ( 2 )  i f  th rus t  

Although a detai led analysis of the  e f fec ts  of m i s s  distance caused 
by cutoff e r rors  i s  not within the  scope of t h i s  report, mention i s  m a d e  
of how such ef fec ts  could be determined. 
perigee i s  chosen based upon a permissible atmospheric en t ry  angle, the 
first step i s  t o  calculate the  ac tua l  en t ry  angle corresponding t o  the  
m i s s  distance. A s  an i l lus t ra t ion ,  consider i n i t i a l  en t ry  in to  Earth 's  
atmosphere (assumed spherically symmetric) a t  an altitude of 50 miles. 
The entry a n g l e  is  simply the  t r a ' ec to ry  angle and fo r  a parabolic ap- 
proach i s  given by cos ai = d-; surface radius i s  approximately 
4000 miles. It i s  realized tha t  t h rus t  application alters the energy of 
the trajectory; however, it is  assumed t h a t  the change i s  insignif icant  
when R i s  large. The vehicle therefore enters the atmosphere along an 
essent ia l ly  parabolic t ra jectory,  thus making the preceding expression 
f o r  the  entry angle applicable. 

Assuming the desired ta rge t  

For t h i s  example, consider a t r a j ec to ry  having the  following i n i t i a l  
conditions: From f igures  8(a) and (b), the  m i s s  d i s -  

tance due t o  magnitude and alinement e r rors  is  -11.2 miles/(f t /sec)  and 
-0.47 mile per degree, respectively. Figure 9 i s  plot ted t o  show the  
e f f ec t s  of such errors on the  atmospheric en t ry  angle. The angle corre- 
sponding t o  an on-course t ra jec tory  (Rp2 = 4040 m i l e s )  i s  2.86'. 

Since the upper l imi t  of the  atmosphere i s  taken a t  50 m i l e s  a l t i -  
tude, it i s  appazent t h a t  e r rors  t h a t  r e su l t  i n  nonentry (cos ai > 1) 

cannot be permitted. Therefore, from figure 9, the  magnitude e r ro r  
should be greater  than -0.88 foot per second, and the alinement error 
should be greater than -21.3'. 

Rpl = 5, R = 50. 

M 
I 
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To define the  l imitat ion of errors 
en t ry  angle presents a f a i r l y  d i f f i cu l t  
entering the  atmosphere a t  too great an 
vehicle design ( intolerable  g loads and 
atmospheric reentry study has been made 

2 1  

t h a t  r e s u l t  i n  too large an 
problem. It is  recognized t h a t  
angle may be prohibit ive t o  the 
heating rates].  A detai led 
by Chapman (ref.  41, i n  which 

methods a re  available t o  obtain the  solution of permissible-entry angles. 

CONCLUDING RFSIARKS 

The analysis presented in t h i s  report has established the re la t ions  
necessary t o  the investigation of corrective maneuvers during the approach 
phase of an interplanetary f l igh t .  Trajectory equations were transformed 
t o  a dimensionless form so as t o  be applicable t o  a l l  planetary bodies. 
The r e s u l t s  a-c -csef-d. d-thin the l imitation of two-dimensional t r a j ec to -  
r i e s  t h a t  axe r e l a t ive  t o  a spherical body and influenced only by an 
inverse-square cent ra l  force f ie ld .  Furthermore, corrective thrus ts  were 
assumed impulsive and alined i n  the plane of motion. 

A study was made of the minimum veloci ty  impulse t h a t  must be applied 
to correct i-n_it.ial perigee errors.  The conplexity of the expressions 
resu l t ing  from the op th iza t ion  prompteii a tr~z2.-m6-~rror itcrztiVe 
solution. The magnitude and alinement of the minimum veloci ty  vector 
were determined and t h e i r  corresponding var ia t ion with i n i t i a l  t r a j ec to ry  
parameters discussed. A s  a means of minimizing the propellant consump- 
t ion,  it is desirable t o  i n i t i a t e  a corrective maneuver a t  a large d i s -  
tance from the planet where the t ra jec tory  veloci ty  i s  r e l a t i v e l y  s m a l l .  
The impulse magnitude was shown t o  be approximately inversely proportional 
t o  the S i s t z ~ c e  ~ t .  which the thrust i s  applied i f  the l a t t e r  i s  consider- 
ably greater  than the taxget peri@yza . T h i s e t  makes pfissi"v2.c c r q i d  
estimation of the  required impulse for  any set of i n i t i a l  conditions. 

Corrective thrus ts  alined i n  directions other than optimum were 
investigated. The s ize  of the velocity increments corresponding t o  c i r -  
cumferential impulses c losely approximates the minimm requirements; if 
corrections a re  executed a t  distances much greater  than the ta rge t  
perigee, the difference i n  AV is  insignif icant .  Thus, it i s  possible 
t o  estimate the minimm veloc i ty  impulse from a r e l a t ive ly  simple 
algebraic expression. 

The cost  of correcting off-course approach t r a j ec to r i e s  was  compared 
t o  the  t o t a l  requirement of a simplified Ear th-Mars  round-trip mission. 
Large deviations from a desired t ra jec tory  r e s u l t  i n  s izable  veloci ty  
increments, the ant ic ipat ion of which w i l l  s ign i f icant ly  influence i n i -  
t i a l  takeoff weights and payload l imitatians.  
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The e f f ec t  of cutoff errors  on the  f i n a l  perigee w a s  analyzed. 
Errors in the  magnitude of the veloci ty  impulse r e su l t  i n  m i s s  distances 
t h a t  decrease with the range a t  which the  corrective impulse i s  applied. 
Conversely, the m i s s  distance due t o  alinement errors  i s  minimized by 
applying thrus t  far  from the planet. 
it was indicated tha t  close control of the impulse vector i s  necessary 
t o  accomplish successful reentry. 

In the  case of atmospheric reentry, 

Lewis Research Center 
National Aeronautics and Space Administration 

Cleveland, Ohio, October 9, 1959 
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APPENDIX A 

O P T W  SOLUTION - SPECIAL CASE (R = Rpl) 

When a corrective veloci ty  impulse is applied at  the perigee of an 
approach t ra jectory,  cer ta in  pecul iar i t ies  of the optbum solution a re  
found. This s i tua t ion  i s  t reated as follows. Equation (13) is  
rewritten: 

1 cos ul sin a+ - -  + -  
V 1  R2 R2 cos a32 

A t  the perigee, % a 0’) therefore, 

v 2  s in  

V 1  R2 cos % 
- S i n % ’  

From the  text, 

Equations (Al) and ( 1 2 )  define the optimum condition. 

0 Solution AI  % P 0 

The equal i ty  of (AI) is  sa t i s f i ed  i f  % = 0”. Tnerefwe, m c  
solution of the optimum requires a circumferential impulse t h a t  causes 
the vehicle t o  achieve an e l l i p t i c a l  trajectory,  the  perigee of which i s  
tangent t o  the ta rge t  perigee &en R > 1. If Rpl < 1, the apogee of 
the e l l i p s e  i s  tangent t o  the t a rge t  perigee. 
be found from equations ( 1 2 )  and (5): 

P1 
The ve loc i ty  impulse can 

Solution B: % # oo 

Equation ( A l )  can now be divided by sin QZ: 

v 2  1 
a R2 cos a2 

(A3 1 
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Solving for cos2% from equations (12),  (A3), and (5), 

EIR + 1 

R (-R3 + R + EIR + 1) 

2 
2 2 cos u2 I 

Since equation (A3) must result in a real physical solution, 

EIR + 1 

R2(-R3 + R2 + EIR + 1) 
51 0 5  

It is recognized that the term (EIR + 1) is always positive because 
The restrictions placed on solution B result from V1 must be positive. 

equation (A5) and may be found from the following: 

R3 - R2 - EIR - 1 = 0 

R5 - R4 - E1R3 - R 2 + EIR + 1 = 0 

(A6 1 
(A7 1 

A s  an illustrative example, consider a parabolic trajectory 
(E1 = 0). Equations (A6) and (A7) reduce to 

arid 

R 5 - R 4 - R  2 + 1 = 0  

Only real, positive roots need be considered. 
one positive root of equation (A8) and two positive roots of equation 
(A9) can be expected. The solution of equation (A8) is obtained from 
the cubic formula, and that of (A9) by approximation. 

From (A8): 

From Descartes' sign rule, 

The results are 

0 < R < 1.466 

From (AS): 1 < R < 1.220 

Since the two inequalities must be compatible, 

1 < R < 1 .220  

Therefore, for any value of R not within these limits, the expression 
(83) leads to a nonreal solution. Consequently, the first solution 
(a2 = 0') is the only one and can be shown to result in the minimum AV. 

P 
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When r < 1.220, the velocity impulse corresponding to solution B 
is found from equations (A3), (12), (9), and (5): 

For El = 0, 

The characteristic of this special case is shown in figure 10. The 
approach trajectory is parabolic, and the velocity impulse is applied at 
the perigee. The curve plotted for R = 1.4 exemplifies a single 
optimum. The minimum requirement occurs when AV is alined in the cir- 
cumferential direction. 
the curve R = 1.1. The minimum AV (% = 13.8O) results f r m  solution 
B. For this condition, a circumferential impulse corresponds to a rela- 
tive maximum and requires a AV about 13.5 percent above AV,,. 

An example of two optimums is illustrated by 
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APPENDIX B 

VELOCITY lMpULSES ALIIYED I N  DIRECTIONS OTRElR THAN OPTIMUM 

Expressions are derived herein t h a t  give the magnitude of the cor- 
rect ive veloci ty  vector f o r  impulsive thrus t  alined i n  tangential, radial, 
and circumferential directions. Also, the  velocity requirement corre- 
sponding t o  zero-energy-change (A3 = 0 )  impulses i s  presented. 

M I analysis, 
t i a l  condition Rp 1 > 1 o r  Rp 1 < 1. P 

In t h i s  
absolute-value symbols w i l l  be used t o  account f o r  e i t he r  i n i -  + 

0, 

Case A: Tangential Thrust 

From sketch (a), 

\ 

(4 
for tangential  thrust ,  

AV = I V 1  - Vzl 
Since cos 3 = cos 9, the def ini t ion of angular momentum gives 

(VE - 1/R) + 1 - E2 + 1 
I 

R2 E + Rp 
p1  I- 1 p1 I- 1 

R2 E + Rp 

Solving for V$ and simplifying, where Vf = El + 1/R, 



Theref ore, 

AV = 

d 
a3 
dl 

I w 

d 
' I  
G 

. 

Limitations on Use of Tangential Thrust 

Under cer ta in  i n i t i a l  conditions the  second rad ica l  of equation (15) 
may be negative, resul t ing i n  an imaginary solution. 
i s  always positive: 

The term (E1R + 1) 

2 0  R - 1  
EIR 2 2  (Rp, - 1) + R(RRp - 1) 

1 

Considering values of R both greater and l e s s  than unity, 

For a given trajectory,  expression (B2) defines the  conditions under 
which a tangent ia l  th rus t  may be applied. 

From sketch (b), 

\ 
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f o r  radial thrust ,  

From trigonometric relations,  

AV = IV1 COS 8 + V2 COS TI 

AV = IvZ s i n  % - v1 s i n  

Also, 

cos y 
s i n  r 

Since H = VR cos a, 

H1 = H2 

Substituting (B4) in to  (B3) ,  

AV = IV1 cos al tan 9 - V1 s in  all P V1 cos % l tan % - tan 51 

Theref ore, 

Now 

M 
I 
Ip 
a3 
P 
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I w 

Equation (B6) is  now given i n  terms of i n i t i a l  conditions: 

Limitations on Use of R a d i a l  Thrust 

A s  i n  case A, a l imitat ion on the use of radial thrus t  presents 
Consider the first rad iaa l  of equation (16):  i t s e l f .  

Dividing by (R - 1) and collecting terms, 

I I 

B e  second rad ica l  of equation (16) is Z; tan 
Therefore, the l imitat ion on radial  corrective 
inequal i ty  (B9). 

a1 and must be rea l .  
impulses i s  given by the 

Case C: Circumferential Thrust 

Frnm sketch (c ) ,  
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for circumferential thrust, 

s = a l  
r = 180 - % 

AV = lVl COS p + v2 COS rl = IV1 COS a1 - V2 COS 91 

AV = $(VIR cos - V$ COS 

Theref ore, 

AV = BlHl - H21 

From the law of sines, 

sin 5 
'2 = '1 sin r 31 '1 sin 9 

sin $ 

2 2 Since H2 = (V2R cos % } 2  = E2 + 1 = V2 - 1/R + 1, 

2 2  2 R - 1  VZ(R COS 9 - 1) = - R 

2 2  R - 1  V;(R' - R sin % - 1) = - R 

Substituting from ( B l l ) ,  

2 2  2 R - 1  VE(R2 - 1) - V1R sin a1 = - R 

RA + VIR 2 2  sin 2 9 
V2 2 = E Z  + 1 /R  = R 

R2 - 1 

Transposing, using ~ 0 ~ 2 %  = 1 - sin2al, Vf = El + 1/R, 
H = @ + R ~ ,  and simplifying give 

E , ( R ~  - R&) + ( ~ 2  - R ~ ~ )  
H$ = E2 + 1 = 

R2 - 1 

M 
I 

. 
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I w 

Equation (B10) may now be rewritten 

Limitations on Use of Circumferential Thrust 

For limitations on the use of circumferential thrust, consider the 
second radical of equation (17). 
then 

If a real solution is to be satisfied, 

Case jj: 

From sketch (a), 

Zero-Xmrgy-Bmge Thrusts ( E 1  = 92) 

Radial 
direction 

/ (a> 

f o r  zero-energy-change thrusts, 

r =  P 
v2 = v1 
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From the re la t ions  of an isosceles t r iangle ,  

AV = WT sinl-2( 

sin h sin p = 

M 

i 
P 

R ~ E ,  + R 

2 sin% 

~ r o m  equations (5) and (81, where Rp2 a 1, 

I 

AV a 2d-R 

(181 

Limitation on Use of Zero-Energy-Change Thrusts 

Since the cosine of an angle must be r e a l  and not greater  than unity, 

E, + 1  

The solution of (B14) at the two l imi t s  r e s u l t s  i n  the condition 
(R > 1, El > -1). 
a distance greater  than the t a rge t  perigee. 

A corrective impulse of this type must be applied at 

. 
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D E V E L O F "  OF EQUATIONS DESCRIBING TRANSFER MANEUVERS 

Perigee Intersection Maneuver 

The execution of the perigee intersection maneuver i s  i l l u s t r a t e d  
i n  f igure  1. The f i r s t  veloci ty  impulse (AVI) ac t s  t o  correct the in i -  
t i a l  perigee, and i t s  magnitude is  calculated based on the minhiza t ion  
analysis described e a r l i e r  i n  the report. 
at  the  ta rge t  perigee i n  a direct ion opposite t o  the  vehicle velocity. 
The required c i rcu lar  veloci ty  i s  simply 

The second impulse i s  applied 

since Rp2 = 1 by definit ion.  The t ra jectory veloci ty  at  the  perigee 

is, from equation ( 5 ) ,  

dG7-i 
The second impulse i s  therefore 

Transfer Ellipse Maneuver 

The t ransfer  e l l i p se  maneuver i s  shown i n  f igure 6(a): 

From the geometry of the figure, the semimajor axis is, by def ini t ion,  
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The semimajor axis can also be related t o  the t o t a l  energy of the 
e l l i p t i c a l  t ransfer  orb i t  (ref. 5) : 

1 
%.e. = - t. e. 

Therefore, from equations ( ~ 2 )  and ( ~ 3 ) ,  

The required veloci ty  along the e l l i p s e  a t  the i n i t i a l  perigee i s  

I 

while the veloci ty  along the  approach path at Rp i s  
1 

The first re t ro thrus t  impulse is  the difference between (C6) and (C5): 

I 

The two possible i n i t i a l  conditions f o r  t h i s  maneuver are shown i n  
figure 6. 

perigee of the  t ransfer  e l l i p se  and directed opposite t o  the  path veloc- 
i t y  i n  order t o  achieve the lower value of c i rcu lar  velocity. 
Rpl < 1, thrust  i s  applied at the  apogee and colinear with the path 
velocity. 
sa te l l i te  orbit  is, from the conservation of angular momentum, 

If Rpl > 1, the  second application of th rus t  i s  a t  the 

If 

In e i t h e r  case, the  veloci ty  at  the  point of tangency t o  the  

The second impulse i s  the absolute difference of ( C 8 )  and c i rcu lar  ve- 
locity.  
condition: 

The absolute value i s  necessary t o  include e i the r  i n i t i a l  

M 
I 
rp 
OJ 
rp 
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Equation ( C 1 )  now is  given as -* 
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(a) Motion in orbital plane. 

(b) Velocity correction diagram. 

Figme 1. - Relative motion and velocity correction diagrams. 
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80 82 84 
Trajectory angle, 9, deg 
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0 40 80 12 0 16 0 

Velocity impulse angle, p, deg 

(b) Velocity impulse in vicinity of optimum. 

Figure 2. - Concluded. Corrective velocity impulse 
required to attain desired trajectory (Rpz = 1). 
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4) a 
8 

2 5 10 20 
Range, R 

50 100 

(c)  V e b i t y  impulse against range. 

Flgurc 3. - Continued. Characteristics of minimum velocity impulse. Initial 
energy, El, 0.05. 
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(a) Initial perigee, Rp, > 1. 

.01 .1 
Initial energy, El 

1 

(b) Initial perigee, R p l <  1. 

Figure 4. - Variation of velocity impulse with initial 
energy ratio. Optimum perigee corrections. Range, 
R, 50. 
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orbit  

\ \ 

el l ipse 

orbit  

Approach path 

Transfer 
e l l  ips e 

(b) Rpl < 1. 

Figure 6 .  - Transfer e l l i p se  maneuver. 
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(b)  I n i t i a l  perigee, Rpl, 0.1. 

Figure 7. - Continued. Required velocity impulse t o  t ransfer  from approach 
t ra jectory t o  c i rcular  s a t e l l i t e  o rb i t .  
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Trajectory angle, ~ 4 3 ,  deg 

Figure 10. - Characteristic of optbum solution, speclal case. Initial 
energy, El, 0; R = Rpl. 
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